Showing posts with label motor oil. Show all posts
Showing posts with label motor oil. Show all posts

Tuesday, January 31, 2023

GM* recently launched a new motor oil performance standard with its proprietary dexos R* motor oil specification.

 GM* recently launched a new motor oil performance standard with its proprietary dexos R* motor oil specification.

Testing is complete and AMSOIL Signature Series already outperforms the dexos R specification. 

Read More:

https://blog.amsoil.com/gm-dexos-r-raises-the-motor-oil-bar-for-high-performance-engines/?zo=278060

General Motors new Dexos R Motoroil Specification


#dexosr #gmdexos, #amsoil #amsoilsynthetics #amsoilwebsite #amsoilstore


http://www.upmpg.com/

Wednesday, November 10, 2021

AMSOIL Signature Series Synthetic Motor Oil Outperforms The Competition

Compared to other synthetic motor oils on the market, AMSOIL Signature series performs far better and protects engines, turbos and emission systems better than other brands.

AMSOIL Signature Series Synthetic Motor Oil
Click photo for more detail view of Signature Series Chart

http://www.performancempg.com/

Monday, August 23, 2021

Don't Put The Wrong Products In Your Car Or Truck!

 Without a owner's manual handy, you can be sure to pick the correct products for your car or truck to satisfy the warranty or service you put it through. Here's the easiest way.

First go and open performancempg.com (Opens in a new window so you can keep these instructions handy as you browse)

Looking up the correct products for your vehicle
Screen shot of performancempg.com



Scroll down slightly until you see the "FIND PRODUCTS FOR YOUR" just under the photo in the center of the page.


Product lookup guide
How to access the Product Lookup Guides


Then click on the category which best suits your application. In this case we are clicking "Auto/Light Truck".

Selecting Application Vehicle Category
Selecting the correct category for your products



Now we need to select the correct year model of your vehicle.

Correct Year Model Application
Select your vehicle's year model



Now we select the manufacturer of your vehicle. In this example we select "Chevrolet."


Selecting vehicle manufacturer
Vehicle manufacturer selection page



Now select the model of your vehicle. In this case "Malibu".


Selecting vehicle model
Selecting vehicle model



Select the correct engine. The letter (8th digit of the VIN in this case. VIN is on the car inside the driver's door, on the title and on the license registration) will tell you which engine via of the VIN (Vehicle Identification Number).


Selecting your correct engine
Now select the correct engine


In this next screenshot you will see at the top the correct motor oils for this engine. If you've made a mistake or need to change something on this vehicle you can do it from the menu on the left. The less expensive choice here is the "OE" or manufacturer's service drain interval while the other choices allow for longer drain intervals and net better performance and mileage.


Correct Motor Oil For Your Engine
The correct motor oils displayed depending on drain interval



The next screenshot shows you what you see if you scroll down a bit. Shows oil viscosity ratings, capacity to fill the engine and the correct oil filter you will need.


Engine motor oil capacity and correct filter
Shows motor oil capacities, viscosity, correct oil filter & drain plug torque.



The next screenshot shows what you see if you scroll down a bit to reveal the correct coolant type that the manufacturer recommends for this engine.


The correct coolant to use in this engine displayed.

 

This next screenshot, when you scroll down further, shows the correct transmission fluid for your automatic transmission.


The correct fluid for the automatic transmission
Showing the correct transmission fluids.



After scrolling down, this next screenshot will show you other fluids you may need for your vehicle such as the correct fluids for your differential, transfer case, power steering and brakes.


Correct Fluids for differential, transfer case etc.
Showing the correct fluids for differential, transfer case, power steering and brakes.



This next screenshot shows you other products for your vehicle you many need such as fuel additives, engine or transmission flush, grease, spray protectant, spray lubricant,  silicone spray and heavy duty engine degreaser.


Misc. other lubricants and greases
Other products such as fuel additives, spray lubricants/protectants, grease and degreasers.



Other products are listed, once you scroll down again, are Miracle Wash, Brake Parts Cleaner, Mudslinger Protectant, Engine Degreaser and Glass Cleaner.


Waterless Car Wash, Glass Cleaner and Engine Degreaser
Other products such as waterless car wash and glass cleaner.



This next Screenshot shows the bottom of the page filled with other information you might find necessary or interesting about your vehicle.


More detailed vehicle information
Other details and information about your vehicle.


To begin your product look up go to performancempg.com and click the link that represents your vehicle type in the "Find products for" link under the photo in the center of the page. This link opens in a new window so you can go back and forth for additional help as you browse the products. Thanks!



Friday, January 17, 2020

The Need To Do Regular Oil Changes

Why Do I Need To Change My Oil?

Dan McClellandDan McClelland | Jan 07, 2020 8:36 AM




Regardless of its quality, every motor oil eventually loses its potency and must be changed to ensure peak engine protection. Let’s take a look at what happens to motor oil over time and why you periodically need to change oil.

Losing the base

Base oils are the backbone of the finished lubricant that ends up in your engine. Over time, they lose effectiveness due to the following factors:

Oxidation

The interaction between oxygen molecules and motor oil molecules naturally leads to chemical breakdown.

Just as oxygen causes a cut apple to brown or exposed metal to rust, it breaks down base oils and reduces motor oil’s effectiveness.

Oxidation can lead to increased oil viscosity, which negatively affects energy efficiency. It also causes the formation of harmful deposits and sludge.

High heat

Today’s engines run hotter than ever before, with temperatures up to 235°F (113ºC), and even higher if towing or hauling.

The rate of oxidation for oil doubles for every 18°F (10°C) increase in temperature.

Moisture

Your vehicle is subjected to temperature swings, even when it is parked in the garage.

Those temperature swings cause condensation to form inside your engine, leading to water contamination.

Leaving a vehicle parked for extended periods or taking short trips that don’t allow the engine to fully warm up allow water to remain in the oil rather than evaporating and exiting through the tailpipe. Water can lead to formation of sludge…yet another reason why you must change oil.
Kinematic Viscosity-Oil vs Honey

Viscosity is a motor oil’s most important property. The lower the viscosity, the faster the oils flows, like water. Thicker oils flow more slowly, like honey.

Viscosity loss

A lubricant’s viscosity is its most important property.

Viscosity has a direct bearing on wear protection, and your engine is designed to operate best using a motor oil of a specific viscosity (e.g. 5W-30).

The intense pressure the oil bears as it’s squeezed between moving parts, like the piston ring/cylinder wall interface, can tear apart, or shear, its molecular structure, leading to viscosity loss.

Suddenly, the 5W-30 motor oil your engine was designed to use is now essentially a 5W-20 oil, and wear protection may be compromised. When this happens, it’s time to change your oil.


Fuel dilution

Fuel can wash past the piston rings and contaminate the motor oil, causing it to lose viscosity.

Frequent short trips that don’t allow the oil to reach normal operating temperature can be especially problematic because the fuel won’t volatilize and exit through the PCV system.

Excessive fuel dilution leads to sludge and varnish, requiring you to change oil more frequently.

Additives: designed to deplete

Additives are added to base oils to reduce destructive processes and enhance beneficial properties.

For example, antioxidant additives help slow the rate of oxidation. Detergency additives help prevent deposits and sludge while cleaning pre-existing deposits. Formulators add anti-wear additives to some lubricants to form a sacrificial barrier on metal components and help prevent wear.

Since they’re sacrificial in nature, additive depletion is one of the primary reasons motor oil loses its effectiveness and must be changed. 

While AMSOIL synthetic motor oil gives you the convenience of fitting oil changes into your schedule, it remains vital to install fresh oil at the appropriate time.  


Tuesday, March 03, 2015

Premium Protection For High-Horsepower Chrysler & Nissan Applications

New synthetic 0W-40 motor oil rounds out the Signature Series line. 

Chrysler and Nissan application motoroil
AMSOIL Synthetic 0W-40
Muscle cars ruled the American landscape in the 1960s and ‘70s, and many of those signature models, such as the Dodge Challenger and Charger, are now available in faster, more powerful designs. In this day and age, it’s not uncommon to find production models that top 600 horsepower and 600 pound-feet (lb-ft) of torque. In fact, the 2015 Challenger Hellcat is the fastest production muscle car of all time, kicking out 707 horsepower and
650 lb-ft of torque.

Powerful muscle car and big truck engines need a high-performance lubricant, and much like these powerful vehicles, AMSOIL sets the bar high when it comes to performance. AMSOIL established all-new standards for motor oil quality and performance when it introduced the world’s first synthetic motor oil to meet American Petroleum Institute (API) service requirements in 1972, and it continues to produce the top-performing lubricants available on the market.

New Signature Series 0W-40 Synthetic Motor Oil

Along with the new 5W-50 viscosity formulated for high-horsepower Ford Mustang engines, the Signature Series line now includes a robust 0W-40 synthetic motor oil formulated specifically for high-horsepower Chrysler and Nissan engines. AMSOIL Signature Series 0W-40 Synthetic Motor Oil (AZF) provides top-of-the-mark protection and performance that customers expect from Signature Series.

· Withstands the stress of high horsepower and heat to provide outstanding wear protection

· Resists viscosity loss due to mechanical shear

· Resists thermal breakdown

· Helps prevent sludge deposits and keeps engines clean

· Reduces oil consumption and emissions

· Maximizes fuel economy

Applications

Signature Series 0W-40 is recommended for Chrysler and Nissan applications calling for a 0W-40 viscosity and requiring the following performance specifications:

· API SN, SM...

· Chrysler MS-12633, MS-10725, MS-10850

· Nissan GT-R®

Applications include, but are not limited to, the following:

· Dodge Charger 6.1L/6.4L

· Dodge Challenger 6.1L/6.4L

· Dodge Viper 8.3L/8.4L

· Dodge Ram 2500/3500/4400/5500 6.4 L

· Chrysler 300 6.1L/6.4L

· Jeep SRT Grand Cherokee 6.1L/6.4L

· Nissan GT-R 3.8L

More information on AMSOIL Synthetic 0W-40 Motor Oil

Thursday, February 26, 2015

Lubrication Technology Explained

 LUBRICATION 101: A LOOK AT BASIC LUBRICATION CONCEPTS

Lubrication can be a daunting subject for someone unfamiliar with its basic concepts. Even someone with experience in the field can be confused by the multitude of lubricants available on the market today. Reviewing a few basic lubrication principles can make it easier to understand why proper lubrication is necessary in every application.

FRICTION

Webster defines friction as the “rubbing of one body against another,” and as “resistance to relative motion between two bodies in contact.” Friction can be beneficial. It generates heat that can be used to start a fire, and it is the principle behind a vehicle’s braking system.

Friction can also be detrimental. The heat generated as the result of friction can cause damage to an engine. Because contact is required to generate friction, wear can take place in these areas of contact, leading to material failures, overheating and the formation of deposits. Although there are many ways to reduce friction, the most common way is through the use of a fluid or semifluid lubricant. The key characteristic of lubricants is that they are not readily compressible, minimizing component contact or eliminating contact altogether.

TYPES OF LUBRICATION

There are three types of lubrication conditions that can exist between two surfaces:
Hydrodynamic or Full-Film Lubrication is the condition in which surfaces are completely separated by a continuous film of lubricating fluid. The non-compressible nature of this film separates the surfaces and prevents metal-to-metal contact. The lubricant’s viscosity assumes responsibility for the majority of wear protection; additives play a limited role. Although full-film lubrication does not generally allow metal-to-metal contact, abrasive wear or scratching can still occur if dirt particles penetrate the lubricating film.

HYDRODYNAMIC LUBRICATION

SURFACES SEPARATED BY BULK LUBRICANT FILM
Engine components operating under a full-film lubrication regime include the crankshaft, camshaft and connecting rod bearings, and piston pin bushings. Under normal loads, transmission and rear-axle bearings also operate under a full-film regime.

Elasto-Hydrodynamic Lubrication exists when a sudden reduction of the oil film causes a temporary increase in viscosity. When viscosity increases, the film can become rigid, creating a temporary elastic deformation of the surfaces. The lubricant’s viscosity and additives work together to protect surfaces in an elasto-hydrodynamic regime.
The shear strength of the fluid increases due to an increase in load or pressure of a surface and behaves as though it were stronger than the metal surface it acts against, thus causing the surface to deform.
 
Anti-wear additives are often relied upon to protect engine bearings in high-load conditions, while both anti-wear and extreme-pressure additives work to protect gears in high-load conditions.

BOUNDARY LUBRICATION

PERFORMANCE ESSENTIALLY DEPENDENT ON BOUNDARY FILM

Boundary Lubrication is a condition in which the lubricant film becomes too thin to provide total surface separation. This may be due to excessive loading, low speeds or a change in the fluid’s characteristics. In such cases, occasional metal-to-metal contact takes place between surfaces, and the surfaces are almost entirely dependent on the lubricant’s additives to provide protection.

Anti-wear additives protect the cam lobes, cylinder walls and piston rings in engine high-load conditions, while antiwear and extreme-pressure additives protect ring and pinion gears in rear axles.

OTHER LUBRICANT FUNCTIONS

Though minimizing friction and wear is the primary function of a lubricant, it is also required to perform the following tasks:

Clean - A lubricant must maintain internal cleanliness by suspending contaminants or keeping contaminants from adhering to components.

Cool Moving Elements - Reducing friction minimizes the amount of heat generated and lowers the operating temperature of the components. A lubricant must also absorb heat from the components and transport it to a location where it can be safely dissipated.

Prevent Contamination - The lubricant must act as a dynamic seal in locations such as the piston, piston ring and cylinder contact areas. This minimizes contamination by combustion byproducts, for example, in the lubricating system. Lubricants are also relied upon to support mechanical seals found elsewhere and to minimize external contamination and fluid loss.

Dampen Shock - The lubricant may be required to cushion the blows of mechanical shock. A lubricant film can absorb and disperse these energy spikes over a broader contact area.

Transfer Energy - A lubricant may be required to act as an energy transfer medium as in the case of hydraulic equipment or lifters in an automotive engine.

Prevent Corrosion - A lubricant must have the ability to prevent or minimize internal component corrosion. This can be accomplished either by chemically neutralizing the corrosive products or by setting up a barrier between the components and the corrosive material.

COMPONENTS OF A LUBRICANT

Lubricants are generally composed of two groups of materials. Base oils comprise 75 to 95 percent of the finished product. The most commonly used base oils are derived from petroleum crude oil. Additives are usually added to the base oils to enhance or impart new properties. The use of such special chemical compounds is another way to minimize friction and wear, and they can offer protection when the lubricating fluid cannot maintain component separation.

INCREASED DEMAND ON LUBRICANTS

As time goes on, the lubrication needs of equipment continue to change. As equipment becomes more advanced and sophisticated, the demands placed upon the required lubricants become more severe. What may have been a preferred lubricant in the past is likely to be totally unacceptable today.

The automotive industry is an excellent example of how demands on equipment have changed. The engines used in today’s vehicles require significantly more from a motor oil than they did in the past.

Modern vehicles are requiring lighter viscosity oils for improved fuel economy, but feature engines that output more power per cubic inch of displacement than ever before. To achieve this power level, vehicle manufacturers are adding turbochargers that expose motor oils to higher temperatures and greater stress. Meanwhile, requirements for cleaner exhaust emissions have contributed to higher levels of contaminants in the oil and increased the oil’s operating temperature. By reducing aerodynamic drag, manufacturers have also minimized the amount of air that flows over engines and drivetrains, causing operating temperatures to trend further upward. Even with all these changes, manufacturers are requiring lubricants to last longer than they ever did before.

HOW ARE SYNTHETIC OILS DIFFERENT?

Although the engineering of synthetic base oils varies, synthetics are generally made through a reaction process that significantly improves the consistency of the base oil and its molecular uniformity. Conventional petroleum base oils, on the other hand, are obtained through a process of distillation.

Distillation slightly limits the molecular diversity that may exist within the base oil, but does not completely eliminate nonessential molecular structures. This is important because unnecessary molecular structures produce variations in the base oil’s performance. The ideal lubricant’s chemical composition is one in which the molecular construction is identical throughout, such as in a synthetic base oil. Because of the way synthetic base oils are produced, they are molecularly uniform and contain significantly less undesirable materials than a conventional base oil. 

Molecular uniformity also affects the properties that each type of lubricant possesses. The properties of conventional oils tend to vary due to inconsistencies in the crude oil from which they are obtained. The properties and performance features of synthetics, on the other hand, are predictable due to their molecular uniformity. 

AMSOIL synthetic lubricants are formulated to take advantage of the superior properties of premium synthetic base oils and top-of-the-line additives. They provide excellent lubrication and wear protection and have been designed to resist the chemical breakdown processes that limit the service life of conventional petroleum oils. 
 

 



Friday, January 09, 2015

Premium Protection for High-Horsepower Ford Mustangs

5W-50 Synthetic Motor Oil
AMSOIL Signature Series 5W-50 Synthetic Motor Oil

AMSOIL has expanded the Signature Series line to include a robust 5W-50 synthetic motor oil formulated specifically for high-horsepower Ford Mustang engines. Signature Series 5W-50 Synthetic Motor Oil (AMR) provides top-of-the-mark protection and performance that customers expect from Signature Series, and it is excellent for all Mustang engines calling for a 5W-50 viscosity.

For more information:

AMSOIL Signature Series 5W-50 Synthetic Motor Oil for High-Horsepower Ford Mustangs

Tuesday, January 28, 2014

Solving the Challenges of Flat-Tappet Cams in Classic Car Engines

Summer belongs to classic cars and hot rods. It's the season when thousands visit car shows across North America and loyalists of every make and model cruise the streets to show off their rides. One of the big concerns among classic car owners in recent years, however, has been the abundance of flat-tappet camshaft failures that many attribute to the reduction of zinc and phosphorus in today's oil formulations.

Flat Tappet & Roller Lifters
Zinc dialkyldithiophosphate (ZDDP) is the most common zinc-based additive, and is used primarily as an anti-wear agent to prevent premature engine wear. It also provides corrosion and oxidation protection. However, because the zinc and phosphorus found in ZDDP can negatively affect catalytic converters, it has been phased out of motor oil formulations in recent years.
Reducing ZDDP content has drawbacks, as classic car owners have found. Older vehicles with flat tappet camshafts and, in particular, engines that include high-tension valve springs or other modifications that create high contact pressures can suffer premature wear due to reduced ZDDP levels.

Flat-Tappet vs. Roller Cams

The design of flat tappet cams makes them especially vulnerable to wear. As the name indicates, the tappet - or lifter - is flat. During operation, the surface of the cam lobe slides rapidly over the surface of the tappet, producing high friction and temperatures. A thin oil film is the only barrier that prevents the lifter and cam lobe from welding together. If the oil film fails or provides insufficient wear protection, the two components can eventually wear the flat tappet cam and affect valve operation. Engine power and efficiency can decline if the flat tappet cam cannot lift the valves enough to adequately charge the chamber for ignition or release exhaust fumes. Because most V8 engines of the muscle-car era came standard with flat tappet cams, the problem is especially prevalent to classic-car and hot-rod owners.
Roller cams, on the other hand, are differentiated by rolling contact rather than sliding contact. Although more costly, roller cams are common in most modern vehicles and can be retrofitted into classic-car and hot-rod engines.
AMSOIL Synthetic Z-Rod Motoroil
Click for larger image

Demand for High-Zinc Oils

The abundance of flat tappet camshaft failures in classic-car and hot-rod circles has spurred the market for high zinc motor oils formulated especially to protect flat tappet cams AMSOIL Z-ROD® 20W-50 Synthetic Motor Oil (ZRT) and AMSOIL Z-ROD® 10W-30 Synthetic Motor Oil (ZRF) are specially engineered for these classic and high-performance vehicles. It features a high-zinc formulation to help prevent wear on flat tappet cams and other critical engine components. Because many of these vehicles sit idle much of the time, Z-ROD contains a proprietary blend of rust and corrosion inhibitors for added protection during longterm storage. Z-ROD Synthetic Motor Oil is designed to perform on the street and protect during storage.
AMSOIL Z-Rod Synthetic Hot Rod

Complete Vehicle Protection

Classic cars and hot rods need more than just premium engine protection. Many are modified to deliver increased power and torque, placing added stress on the transmission, differential and chassis. AMSOIL Synthetic Manual Transmission & Transaxle Gear Lube (MTG), Severe Gear® Synthetic Gear Lube (SVG, SVT, SVO & Dominator® Synthetic Racing Grease (GRG) offer advanced protection modified classic cars and hot rods need. These and other products are featured in the new Classic Cars Brochure (G3113).

Purchase AMSOIL products at up to 25% discounted as an AMSOIL Preferred Customer.




Monday, January 27, 2014

AMSOIL Signature Series Synthetic Motor Oil Outperforms Competition in New Study

Nine synthetic motor oils were compared to AMSOIL Signature Series 5W-30 Synthetic Motor Oil (ASL). When it was all said and done, Signature Series demonstrated the best overall performance and cost-effectiveness.

AMSOIL Signature Series 5W-30 Motor Oil
Click for larger image
Since AMSOIL introduced the first synthetic motor oil to meet American Petroleum Institute (API) service requirements in 1972, many other synthetic motor oil brands have been introduced. Today, synthetics are widely viewed as superior to conventional motor oils, and demand continues growing, but how do other brands compare to AMSOIL?

A Study of SAE 5W-30 Synthetic Motor Oils

Signature Series 5W-30 Synthetic Motor Oil and nine other synthetic oils were subjected to five industry tests conducted according to American Society of Testing and Materials (ASTM) methodology. The overall annual cost of each oil was also compared. The study included synthetic motor oils exclusively for a number of reasons. First, most motorists now understand that synthetics provide increased performance benefits compared to conventional oils, so convincing consumers of synthetics' superiority is less of an issue. Second, while conventional motor oil sales remain flat, demand for synthetics continues to increase. Third, testing only synthetics facilitates an apples to apples comparison.

Methodology

Testing examined several important areas of motor oil performance, including resistance to deposit formation, wear protection, high-temperature stability, resistance to acid formation and cold temperature performance.
4 Ball Wear Test Oil Brands Comparison Chart
Click for larger image
Four-Ball Wear Test results indicate significant differences in relative wear protection between oils. The top four performers limited wear scars to under 0.40 mm. AMSOIL Signature Series Synthetic Motor Oil demonstrated the best wear protection in the Four-Ball Wear Test.

Total Base Number (TBN) Brands Comparison Chart
Click for larger image

 AMSOIL Signature Series Synthetic Motor Oil tested two numbers higher than the nearest competitor. 



Each oil was subjected to the following ASTM test methodologies:

  • Thermo-Oxidation Engine Oil Simulation Test (TEOST, ASTM D 6335)
  • NOACK Volatility Test (ASTM D 5800)
  • Four-Ball Wear Test (ASTM D 4172 Mod.)
  • Total Base Number (ASTM D 2896)
  • Cold Cranking Viscosity (ASTM D 5293)
Test results published in A Study of SAE 5W-30 Synthetic Motor Oils describe and represent properties of oils that were acquired from November 2012 to December 2012. Results do not apply to any subsequent reformulations of such oils or to new oils introduced after completion of testing. All oils were available to consumers at the time of purchase. An independent, third-party lab conducted all tests. Formulations were coded to reduce the potential for bias, and samples were tested in random order. An appropriate number of trials of each oil were run to produce results at the 95 percent confidence level when compared to Signature Series Synthetic Motor Oil. The 95 percent confidence level only applies when comparing AMSOIL Signature Series Synthetic Motor Oil to the other 5W-30 oils. The 95 percent confidence level does not apply when comparing the other oils to one another.

Candidate Oils

The following nine oils were selected for the study:
  • Castrol Edge® with Titanium Fluid Strength Technology®
  • Lucas Synthetic
  • Mobil 1™ Extended Performance
  • Pennzoil Ultra™
  • Petro-Canada SUPREME Synthetic™
  • Quaker State Ultimate Durability™
  • Red Line High Performance Motor Oil
  • Royal Purple High Performance Motor Oil
  • Valvoline SynPower® Full Synthetic Motor Oil
All oils are 5W-30 viscosity and recommended for applications requiring API SN/ILSAC GF-5 specifications.

Results

AMSOIL Signature Series Synthetic Motor Oil displayed the best results in the Four-Ball Wear, Total Base Number and Cold Crank Viscosity Tests. Results in the NOACK and TEOST Tests were also impressive, proving Signature Series Synthetic Motor Oil's excellent high-temperature performance. Other oils performed well in some tests, but not as well in others, illustrating the challenge inherent in formulating a high-quality motor oil that performs well in tests designed to assess optimum engine protection and life. In addition to delivering outstanding performance, Signature Series Synthetic Motor Oil provides maximum cost-effectiveness - even at retail pricing. Because they buy at wholesale, Dealers and Preferred Customers receive even more value. In the end, no other oil demonstrated itself capable of providing the overall performance in these tests and cost effectiveness of Signature Series.

Cold Crank Viscosity Brands Comparison Chart
Click for larger image
Although synthetic motor oils are known to provide increased low temperature performance compared to conventional oils, results suggest performance differences between formulations. AMSOIL Signature Series Synthetic Motor Oil demonstrated the lowest cold crank viscosity (3,727 cP).

Teost (ASTM D-6335) Brands Comparison Chart
Click for larger image
 Results demonstrate a range of performance differences. Only Castrol Edge with Titanium Fluid Strength Technology and AMSOIL Signature Series Synthetic Motor Oil limited total deposit weight to 5 mg or less.




















AMSOIL 5W-30 Signature Series Synthetic Motor Oil

Wednesday, January 22, 2014

AMSOIL Synthetic Lubricants Proven in Las Vegas Taxi Fleet Field Trial

AMSOIL Synthetic Bottles Photo
Click for information at AMSOIL.com

With modern vehicles producing increased heat, the ability of lubricants to protect against sludge and deposit formation is becoming more important. Motor oils and transmission fluids must demonstrate increased thermal stability throughout longer drain intervals for components to last as designed.

AMSOIL synthetic lubricants are formulated with reserve protection to withstand heat and its negative effects. To demonstrate it, AMSOIL Signature Series Synthetic Motor Oil and Signature Series Synthetic Automatic Transmission Fluid were put to the test in taxi cabs operating in the searing desert heat of Las Vegas, Nev.

Taxi Fleet

Taxis are notoriously hard on lubricants due to excessive idling and constant stop and go driving loaded with passengers and cargo. Las Vegas summer temperatures added to the challenge, topping 100ºF during this field study.

Six vehicles operated with AMSOIL synthetic lubricants for 18 months. The vehicle selected for further analysis – a 2010 Dodge Charger equipped with a 2.7L V6 engine and 4-speed automatic transmission – accumulated 7,033 hours (102,582 miles) prior to the engine and transmission disassembly. Given the unusually high amount of idle time, maintenance intervals were determined in hours rather than miles. Signature Series 0W-20 Synthetic Motor Oil (ASM), changed every 900 hours or approximately 15,000 miles, was used in the Charger’s engine, while the transmission used Signature Series Multi-Vehicle Synthetic Automatic Transmission Fluid (ATF), which was not changed during the study.

The Charger operated throughout Las Vegas up to 24 consecutive hours each day, with the engine shut down only during refueling and personnel changes. Average speed was 14.6 mph, while the EPA indicates the average speed for city driving is 21.2 mph, illustrating the excessive amount of idle time and stop and go driving.

Results

Transmission components prone to the effects of lubricant failure, including the valve body and clutch plates, revealed virtually no sludge and little wear after operating 7,033 hours (102,582 miles) on a single fluid change. Although the Charger carried a recommended transmission fluid change interval of 60,000 miles in severe service, Signature Series Multi-Vehicle Synthetic ATF continued providing superior protection well beyond the severe-service recommendation, confirming its ability to provide reserve protection.

Engine components susceptible to the formation of harmful sludge, including the oil pan, oil pickup tube and cylinder heads, revealed virtually no sludge, earning high ratings from an independent calibrated rater. Results prove the ability of Signature Series Synthetic Motor Oil to safely extend drain intervals in severe service. Complete results are available in the Las Vegas Taxi Fleet Field Study (G3118) available from AMSOIL Inc.
Cylinder head and transmission case
Click for larger image
Following over 100,000 miles of severe service, the transmission case and cylinder
head contained virtually no sludge, confirming the superior heat resistance of
Signature Series Synthetic Motor Oil and Signature Series Synthetic ATF.
100,000 mile transmission service photo
Click for larger image

Tuesday, January 14, 2014

Reading a Product Data Bulletin: Viscosity

A lubricant's viscosity and how it changes under different temperatures and operating conditions is one of the most important properties determining performance and protection. Accordingly, Kinematic viscosity is generally the first property listed on an AMSOIL product data bulletin.
Kinematic viscosity, measured using ASTM D 445 methodology, determines an SAE oil's hightemperature viscosity grade (for example, the "30" in 5W-30), while its Cold Crank Simulator (CCS) viscosity, measured using ASTM D 5293 methodology, determines its low-temperature grade (the "5W" in 5W-30).

Why Two Different Test Methods?

Viscosity can be viewed in two ways. Kinematic viscosity is defined by the lubricant's resistance to flow and shear due to gravity. To illustrate, imagine pouring two containers, one filled with water and the other with honey. The rate at which each fluid flows is governed by its Kinematic viscosity. Since the Kinematic viscosity of water is lower, it flows faster.
Dynamic (or absolute) viscosity, measured by the CCS test, is defined as the lubricant's resistance to flow as indicated by its measured resistance, best thought of as the amount of energy required to move an object, such as a metal rod, through the fluid. It takes less energy to stir water compared to honey because the dynamic/ absolute viscosity of water is lower.
Each test method is designed to replicate a specific operating condition, allowing formulators and end-users to determine the lubricant's characteristics when in use. The CCS viscosity test evaluates the amount of energy it takes to start an engine at a specified cold temperature; the lower the viscosity grade, the lower the temperature at which the test is performed. The test assigns a value in centipoise (cP), used to determine the viscosity grade. Using Signature Series 5W- 30 as an example, its viscosity at -30ºC (-22ºF) can be no greater than 6600 cP to receive a 5W grade (see chart). Lower values reflect lighter-viscosity oils.
The Kinematic viscosity test attempts to simulate viscosity at normal operating conditions for a passenger car/light truck. The test is performed at 100ºC (212ºF) and/or 40ºC (104ºF), depending on the grading system being used. The value at
100ºC is used to determine the SAE viscosity grade. The test measures how long the oil takes to completely flow from a viscometer device heated to 100°C. The elapsed time in seconds is converted to centistokes (cSt). Lower values reflect lighter-viscosity oils.

Viscosity Index

The viscosity index (VI) of a lubricating fluid refers to how much the viscosity of the fluid changes due to temperature. A high VI indicates the fluid undergoes little viscosity change due to temperature fluctuations, while a low VI indicates a relatively large viscosity change. The Viscosity Index Test (ASTM D 2270) is based on the Kinematic viscosity of the fluid at 40°C (104°F) and 100°C (212°F). A fluid whose viscosity does not change much between these two temperatures will have a higher VI than a fluid whose viscosity change is greater. Viscosity index numbers above 95 are considered high. Fluids with a high VI provide more protection to critical components over a wide range of temperatures by maintaining fluid thickness and the necessary fluid barrier between parts.
AMSOIL posts data information proudly on each product page at or near the bottom of the page. Check out the different AMSOIL Synthetic Motor Oils data information posted by clicking on a specific motoroil and opening the page. Compared to other motoroils on the market, AMSOIL is clearly superior. AMSOIL Synthetic Motor Oils

Monday, January 13, 2014

Oil Additives Can Offset the Careful Balance of a Well-Formulated Motor Oil

An overabundance of anti-wear agents, for example, can lead to reduced resistance to corrosion.

Dan Peterson - Vice President Technical Development AMSOIL Inc.

I don't get up on my soapbox very often – partly because I have put on a few extra pounds and don't want to break the box, and partly because it's just not my personality. Not a lot of things really get to me, but when I come across something that does, you don't want to be with me in the car for a long drive. One of these things is engine oil additives. The last time I stopped by the local parts store to pick up a tool for a brake job on my Ford Fusion, I stood in the aisle for a full 10 minutes looking at the huge display of engine oil additives. I was not in a hurry, so I picked up a dozen or so and read the marketing claims.

Wow; it seems almost any internal engine problem in the world can be solved simply by using an engine oil additive. "Restores engine life, eliminates dry starts, eliminates engine noise, restores parts' surfaces AND compensates current wear!" Now I see why people buy all these oil additives. Too busy or just not interested in taking care of your vehicle? Just wait until you have a problem and then buy a solution at the local parts store and you are back in business. Our instant-gratification culture pushes us into believing in quick solutions. In reality, there are very few quick solutions that can correct years of neglect in any area of life, including your internal combustion engine. Very few, if any, engine oil additives solve engine issues overnight or somehow restore engines to their original condition. So how do you get the longest, trouble-free life out of your engine? Use a highquality, trusted brand of synthetic motor oil regularly and don't add any engine oil additives. Formulating a motor oil to perform all the critical jobs required by your engine is a balancing act. You can't just focus on improving one property without testing and evaluating the impact on all critical oil properties. Many times, use of additives improves one property, but causes other properties to take a nosedive. 

Formulating synthetic motor oils is a core strength developed over the past 40 years at AMSOIL, and it is not an easy task. Motor oils need to protect engines against abnormal wear, excessive varnish, sludge, rust and corrosion and damaging foam. Motor oils also need to remove heat, help meet fuel economy standards, keep engine seals from leaking and keep catalytic converters working effectively over their projected lives.

Many negative outcomes derived from using engine oil additives have been documented over the years, including accelerated corrosion, excess oil thickening in cold temperatures and increased deposit formation. Most of these negative outcomes are relatively complicated chemical interactions, but just like your family is interconnected, so is the chemistry in your motor oil. When you add Uncle Buck to your family for a week, you and the kids all have a lot more fun staying up late and listening to stories, but he upsets the family balance. The kids have black circles under their eyes from staying up too late, you argue with your spouse about a few choice new words the kids picked up and you have to clean up cigar butts all over the garage when he finally leaves. Seems fun at first, but a week-long visit proves having Uncle Buck live with you for good isn't such a good idea.

The chemicals in motor oils are all interconnected and work together like a family unit to provide all the important properties required to keep your engine operating well. Most motor oils are designed with a measured amount of wear protection and deposit control. The problem comes when you add a whole bunch of extra or new wear protection or deposit control, and it ends up creating corrosion or destroying coldtemperature properties. Motor oils that perform well have some Uncle Buck built in, but at an appropriate level that does not upset critical chemistry in other areas designed to keep your engine running smoothly over the long run.

If you want a more detailed explanation by industry experts, a recent Noria announcement outlined that "Aftermarket oil additives can backfire." In the book, "Practical Handbook of Machinery Lubrication," the following description is listed:

"Increasing the percentage of a certain additive may improve one property of an oil while at the same time degrade another. When the specified concentrations of additives become unbalanced, overall oil quality can be affected. Some additives compete with each other for the same space on a metal surface. If a high concentration of an anti-wear agent is added to the oil, the corrosion inhibitor may become less effective. The result may be an increase in corrosion-related problems."

It's a much fancier way of saying too much of your Uncle Buck is not good for your marriage. Next time you talk to someone who is contemplating using one of those flashy new engine oil additives, tell them about the importance of maintaining the critical balance in motor oil and what can happen when it becomes unbalanced. 

AMSOIL Synthetic Motor Oils